Prediction, Proxies, and Power

Robert J. Carroll* Brenton Kenkel'

March 1, 2016

Abstract

Many enduring questions in international relations theory focus on power
relations between states, so it is important that scholars have a good
measure of relative power. But the standard measure of relative mili-
tary power, the capability ratio, is barely better than random guessing at
predicting military dispute outcomes. We use machine learning tools to
build a superior proxy, the Dispute Outcome Expectations score, from the
same underlying data. Our measure is an order of magnitude better than
the capability ratio at predicting dispute outcomes. In replications of 18
recent empirical studies in international relations, we find that replacing
the standard measure with DOE scores usually improves both in-sample
and out-of-sample goodness of fit. More broadly, we argue that scholars
should focus on out-of-sample predictive power when constructing prox-
ies for important concepts in political science. Our approach illustrates
how machine learning tools can automate this process.
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For all its progress—more nuanced arguments, more useful theories, big-
ger data and more systematic ways to analyze them—international relations
remains, in many ways, a study of power. This is best reflected in the ques-
tions that have endured. Is the world safer when power is concentrated in
a few states or broadly distributed (Waltz 1979)? How does the balance of
power between states, or shifts thereof, affect the likelihood of war (Organski
and Kugler 1980; Powell 1999, 2006)? Do international organizations allow
states to gain benefits they would not receive from power politics alone (Keo-
hane and Nye 2001)? But without good measures of power, we cannot provide
good empirical answers to these fundamental questions. Consequently, the im-
portance of measuring power to the study of international politics cannot be
overstated.

Like many other important concepts in political science—say, ideology or
democracy—power cannot be measured directly. Indeed, measurement prob-
lems in political science often entail the construction of proxies. Recent ad-
vances in computing and modeling have allowed political scientists to build
sophisticated, data-driven proxies for variables as diverse as legislator ideol-
ogy (Clinton, Jackman and Rivers 2004), judicial independence (Linzer and
Staton 2014), and country regime types (Jackman and Treier 2008). But de-
spite the centrality of power to many important hypotheses in international
relations, its measurement has seen far less innovation.! In this article, we de-
vise a new approach to measuring power—specifically, the balance of material
power between a pair of countries. Our focus on the contributions of ma-
terial capabilities follows the example set by most existing efforts to measure
power in the international sphere, starting with the work by Singer, Bremer and
Stuckey (1972). In contrast with previous approaches, ours is data-driven: we
aim to learn what combination of observable material capability variables best
predicts international dispute outcomes. We show that the standard measure,
the ratio of Composite Index of National Capability scores (Singer, Bremer and
Stuckey 1972), predicts militarized dispute outcomes terribly—only 1 percent
better than a null model with random guessing. Our new proxy, the Dispute
Outcome Expectations score, is much better, providing a 20 percent predictive
improvement.

Before constructing a new proxy for relative material power, we first con-
sider what makes a good proxy more generally. Despite the innovations in
measurement in various fields, political scientists have not reached a consen-

IA recent exception is Arena (2012).



sus on what makes for a good proxy, nor is there a common evaluatory metric.
We argue for a predictive criterion: if the concept of interest is supposed to
be associated with some observable outcome, then its proxy should predict the
outcome well. By prediction, we mean out-of-sample prediction, with data not
used to construct the proxy itself. Happily, contemporary machine learning
tools make it easy to construct proxy variables according to this criterion so
long as data on the relevant outcomes are available. In the case we consider, a
proxy for relative military power, the natural outcome of interest is who wins
in military disputes. A good measure of relative military power ought to pre-
dict dispute outcomes well. It is surprising that the standard measure does
so poorly by this criterion, given its ubiquitousness: as we document below,
dozens of recent publications in international relations use CINC-derived mea-
sures as proxies for power. Our predictive approach, combined with the use of
modern machine learning tools, allows us to yield a far superior measure from
the same data underlying the usual measure.

Like Ulysses or Goldilocks, the proxy maker must strike a delicate balance.
She must learn from the data to construct the measure, else it will fail to cap-
ture important dimensions of the concept under study. A priori measures like
summed rating scales suffer from this underfitting problem: they fail to take
advantage of the wealth of data scholars now possess. But the analyst who em-
ploys a data model for proxy construction faces pitfalls, too. She may misiden-
tify chance features of her data as systematic, a problem called overfitting. A
good proxy should fit the data well, but not so well that it fails to general-
ize. The criterion we advocate, out-of-sample prediction, balances these two
considerations. An underfit proxy will, of course, be a poor predictor, but so
too will a data-driven proxy that maximizes in-sample fit at the expense of
generalizability.

Supervised learning techniques, having been designed to navigate the straits
between underfitting and overfitting, are ideal for data-driven proxy construc-
tion. Machine learning models are flexible enough to model relationships far
more complex than possible in ordinary regression or measurement models,
but they also guard against connecting the dots too aggressively or misinter-
preting noise in the data as a complex relationship. Virtually every supervised
learning method has a set of tuning parameters that govern how much flexibil-
ity to allow for—in effect, to what extent to treat variation in the data as signal
rather than noise. To develop an optimal model for out-of-sample prediction,
an analyst simply chooses appropriate tuning parameters, usually by a method
like cross-validation that estimates prediction error (Efron and Gong 1983).

2



Our approach mirrors that of Hill and Jones (2014), who use cross-validation
to assess the relative predictive power of many variables all thought to affect
the same outcome. Our focus, however, is on constructing variables rather
than comparing them.

Our output is the Dispute Outcome Expectations (DOE) score. We use the
data on the outcomes of militarized interstate disputes (Palmer et al. 2015) to
model the relationship between material capability holdings and dispute out-
comes, all while optimizing for predictive power. For every dyad-year from
1816 to 2007, we use this model to estimate the probability that each state
would win a hypothetical dispute (and the probability it would end in a stale-
mate). DOE scores therefore have the same temporal and spatial coverage
as the current state of the art, the capability ratio, but have two additional
advantages. First, in the cases where disputes did occur, the DOE scores are
much better predictors of the outcome than the capability ratio. Second, the
DOE score is directly interpretable as the probability of victory, an important
concept in the literature on bargaining and war (Fearon 1995; Powell 1996).

When we construct a new proxy by optimizing over predictive power for a
given outcome, it is almost tautological that it will predict that outcome better
than the extant alternatives. For a fairer comparison, we can take a sample
of typical applications of the old proxy and see whether the new one accom-
plishes them better. For example, international relations scholars include the
capability ratio, the standard proxy for relative military power, in models of
dependent variables other than dispute outcomes (most commonly, whether
a dispute takes place at all). We reanalyze 18 such empirical models to see
whether they fit better when we replace the standard proxy with DOE scores.
Since these studies examine outcomes besides the one we use to construct our
proxy—namely, victory or loss in international disputes—there is no guarantee
that our new proxy will do better. Nonetheless, we yield an improvement in
fit in at least 14 of the 18 cases. We encourage the creators of future proxies,
both in this domain and others, to conduct similarly systematic and compara-
tive studies of their variables’ performance in typical applications.

Although our main goal is to develop a better proxy for military power
rather than to test hypotheses about its determinants, we do gain some broad
substantive insights from the model-building process. Most simply, material
capabilities indeed matter for military power, as we can explain a substantial
amount of the variation in militarized dispute outcomes just with variables on
material capabilities. This finding runs in contrast to the classic study by Maoz
(1983), who finds no relationship between matériel and militarized dispute
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outcomes. Our results suggest that this finding is the artifact of relying on
ratios of capability holdings, which are a poor proxy for relative material power.
We also find that the martial effectiveness of the various material capability
components varies over time, which the standard measure does not allow for.

The paper proceeds in five sections. In the first, we lay out our general
argument about proxy construction and its application to the case of military
power. Section 2 describes the data and methods we use to construct a new
proxy for expected dispute outcomes. In Section 3, we discuss the advantages
and disadvantages of our measure. Section 4 contains the results of our repli-
cations and advice for using the DOE score. The final section addresses next
steps and concludes.

1 Proxies and Power

A proxy is a function of observable variables that aims to measure an unobserv-
able quantity. By definition, we can never know for sure how well a particular
proxy captures the concept of interest. We can still try to gauge the quality of a
proxy by testing its association with some observable outcome (or outcomes)
that we would expect the underlying concept to be related to; in the context of
summed rating scales, Spector (1992, 46-47) notes that “validation can only
occur within a system of hypothesized relations between the construct of in-
terest and other constructs,” and thus that such validation “demonstrates the
potential utility of the construct.” We can take this logic further, extending
it to how we build proxies in the first place. Instead of constructing a proxy
from observable indicators according to an a priori formula and then testing
whether it is associated with some observable outcome, we can select as our
proxy the function of observables most strongly associated with the given out-
come. Measurement models automate this process. For example, ideal point
estimates of legislator ideology are selected to maximize the likelihood or pos-
terior probability of the observed roll-call matrix (Poole and Rosenthal 1985;
Clinton, Jackman and Rivers 2004).

But without some kind of regularization or correction, these data-driven ap-
proaches to proxy construction run the risk of overfitting—amplifying the noise
inherent in data and mistakenly treating it as a signal. The risk of overfitting is
particularly high when there are too many degrees of freedom relative to the
amount of data available. If the outcome of interest is only rarely observed, it
might be hard to separate signal from noise. Similarly, overfitting is a concern
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if we are modeling the proxy as a function of many observable indicators, or
we do not have the domain knowledge we would need to impose a specific
functional form for the relationship between these indicators and the outcome
of interest. Situations like these are common in political science, including
the current context. To prevent overfitting, we can use informative priors in
Bayesian contexts (Clinton, Jackman and Rivers 2004) or cross-validation in
frequentist contexts (Efron and Gong 1983).

We want to measure relative military power, or the balance of power be-
tween two states at a particular point in time. Singer (1963, 420) argues that
“power is to [political scientists] what money is to the economist.” But power,
unlike money, is not directly observable. We follow Singer, and virtually all of
the international relations literature of the previous half-century, in develop-
ing a proxy for relative power that is a function of each country’s observable
material capabilities. Though power may in truth be a function of many vari-
ables, including non-material factors, we restrict our attention to the set of
variables used in the Composite Index of National Capabilities (Singer, Bremer
and Stuckey 1972). By holding the set of variables fixed, we ensure that any ob-
served improvements are due to our modeling approach and not to additional
information. Still, to reflect the limited scope of the variables we consider, we
refer to both CINC-based measures and our own as proxies for relative material
power.

If we want to use an observable outcome to validate or construct a proxy for
relative military power, the obvious choice is war outcomes. Or, since full-scale
wars are (thankfully) rare, we may broaden our scope—as conflict scholars
often do—to consider the outcomes of all militarized disputes (Palmer et al.
2015). A good proxy for relative power should be a good predictor of which
side prevails in militarized disputes. Indeed, the probability of victory by each
side is itself an important concept in formal theories of bargaining and war
(Fearon 1995; Powell 1996) and empirical examinations thereof (e.g. Reed
et al. 2008).

The standard proxy for relative material power, the capability ratio, is an a
priori creation. It is based on the CINC score, which is the average of a state’s
shares of the global totals of six raw material holdings in a given year.? In
a dyadic analysis, a state’s capability ratio is the ratio of its own CINC score

2The six components are iron and steel production, primary energy consumption, military
expenditures, military personnel, total population, and urban population (Singer, Bremer and
Stuckey 1972).



to the total CINC score in the dyad. The capability ratio was popularized by
Bueno de Mesquita (1981, 108), who treated each side’s capability ratio as
a proxy for its probability of victory in a potential dispute. Since then, the
capability ratio and its cousins have become by far the most common proxies
for relative material power. Examining publications from 2005 to 2014 in five
top journals for empirical international relations research,® we found at least
94 articles that control for the capability ratio or other proxies based on CINC
scores.

The key question for international relations scholars is whether the capa-
bility ratio is a good proxy for relative material power. Is it a good predictor of
actual dispute outcomes? Writing over three decades ago, Maoz (1983) found
no evidence that ratios of military expenditures and military personnel are
associated with dispute outcomes; this important finding has helped shape de-
bates since. Our findings on ratios of CINC scores, reported in the next section,
echo Maoz’s: the capability ratio is only 1 percent better than random guessing
at predicting dispute outcomes. The next question is whether the methods we
advocate would make better use of the data. We find that by using machine
learning to develop a predictive model of dispute outcomes as a function of
material capabilities, we yield a superior proxy for relative material power.

Measuring expected dispute outcomes is in many ways a hard case for out-
of-sample prediction. There are relatively few interstate disputes, and even
fewer that involve just a single pair of states. Even if we restrict ourselves
just to the National Material Capabilities data, there is an abundance of vari-
ables: six capability components for each side of the dispute, along with the
six annual shares associated with each raw component, for a total of 24. There
is no consensus (and little developed theory in the first place) on how these
components ought to map into power, so our models must be flexible. Yet
amid all these potential sources of noise, we are able to extract a decent sig-
nal: our measure is 20 percent better than a null model at predicting dispute
outcomes—acceptable performance in absolute terms, and a major improve-
ment over current practice.

3 American Political Science Review, American Journal of Political Science, Journal of Politics,
International Organization, and International Studies Quarterly.



2 Building a Better Proxy for Relative Military Power

Our goal now is to squeeze as much predictive power as we can from data on
states’ material capabilities. When prediction is the goal, “black box” algorith-
mic techniques usually outpace standard regression models (Breiman 2001).
So, to build our new measure, we augment traditional approaches with meth-
ods from machine learning.

2.1 Data

To evaluate the predictive performance of the capability ratio and then to build
an alternative measure, we use data on the outcomes of international dis-
putes. We combine the National Material Capabilities data (Singer, Bremer
and Stuckey 1972) with information on the outcomes and participants of Mil-
itarized International Disputes between 1816 and 2007 (Palmer et al. 2015).
Our data consist of N = 1,740 disputes, each between an “initiator,” or Coun-
try A, and a “target,” or Country B.* Every dispute outcome is either A Wins,
B Wins, or Stalemate, denoted Y; € {A, B,@}. Most disputes end in a stalemate,
and victory by the initiator is over twice as likely as victory by the target, as
shown in Table 1.

Count Proportion

A Wins 201 0.12
Stalemate 1460 0.84
B Wins 79 0.05

Table 1. Distribution of the three dispute outcomes.

We model dispute outcomes as a function of the participants’ military ca-
pabilities. Our data source, the National Material Capabilities dataset, records
annual observations of six characteristics of a country’s military capability: mil-
itary expenditures, military personnel, iron and steel production, primary en-
ergy consumption, total population, and urban population.> We also calculate

*See the Appendix for the data construction and coding specifics.

>There are missing observations in the National Material Capabilities data. Consequently,
about 17 percent of the disputes we observe contain at least one missing cell. We use multiple
imputation to deal with missingness (Honaker and King 2010); see the Appendix for details.



each country’s share of the global total of each component, giving us 12 vari-
ables per dispute participant. The matrix of predictors has 26 columns: the
24 individual capability characteristics of the initiator and target, the standard
capability ratio, and the year the dispute began. Collect these predictors for
the i’th dispute into the vector X;.

2.2 A Metric for Predictive Power

We face two challenges in evaluating a model’s predictive power. The first is
to define a metric—one that is appropriate to the task at hand and reasonably
interpretable. The second is to measure each model’s ability to predict out
of sample. Our main purpose, which is to measure the chances of victory for
each side in a hypothetical interstate dispute, is inherently an out-of-sample
prediction task.

As fortune plays a role in every military engagement, it is impossible to per-
fectly predict the outcome of every dispute. We therefore want a measure of
predictive power that respects the probabilistic nature of militarized disputes.
Classification metrics like the accuracy statistic, also known as the percentage
correctly predicted, do not fit the bill.® Instead, we employ the log loss, which
is the negative of the average log-likelihood, as our metric for predictive power
(Hastie, Tibshirani and Friedman 2009, 221). Let a model be a function f that
maps from the dispute-level predictors X; into the probability of each potential
dispute outcome, f X)) =( fA(Xi), fB(Xi), f@(Xi)). The “hat” on f emphasizes
that the form of the function has been learned from the data, whether by esti-
mating regression coefficients or by a more flexible predictive algorithm. The
log loss of model f on the data (X,Y) is’

(X == > 1Y = tHog X)), )

i=1 te{A,B,0}

Smaller values of the log loss represent better predictive power, with the lower
bound of 0 indicating perfect prediction.

We care mainly about the generalization error of our models—the expected
quality of their predictions for new data that was not used to fit the models.
Our small sample size of N = 1,740 makes this tricky. Had we a surplus of

Such classification metrics also discriminate poorly with imbalanced classes like ours
(Kuhn and Johnson 2013, 420-423).
’To avoid numerical problems, very low probabilities are trimmed at € = 10™1#,
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observations, we could use some suitably large number to fit our models and
hold out the remainder to assess the models’ predictive power. But with as little
data as we have, splitting the sample is ill-advised: we cannot hold out enough
observations to estimate the generalization error precisely without harming the
precision of the model itself. So, to measure out-of-sample predictive power
without losing data, we turn to K-fold cross-validation (Hastie, Tibshirani and
Friedman 2009, 241-249). We randomly assign each dispute observation to
a “fold” k € {1,...,K}, where we follow standard practice by setting K =
10.8 For each k, we split the data into a “test” sample containing fold k and a
“training” sample containing the remainder of the data. We fit a model only
on the training sample and then calculate its predicted probabilities for the
data in the test sample.® After repeating this K times, we have an out-of-
sample prediction for each observation in our data calculated from a model
that did not see that observation. We compare these predicted probabilities to
the observed outcomes to estimate our models’ generalization error. Formally,
the cross-validation loss of the model f is the average out-of-fold log loss,

K
CVL(f) = [l( ZE (fA(_k),X(k), Y(k)) , (2)
k=1

where (X®,Y®) is the data in the k’th fold and f® is the model f fit to the
data excluding the k’th fold.

Because it is measured on the log-likelihood scale, the log loss metric is
hard to interpret. To ease the interpretation, we compare models’ log loss to
that of a null model, whose predicted probabilities always equal the sample
proportions of each outcome. The proportional reduction in cross-validation
loss of the model f is

CVL(fyu) — CVL(f) |
CVL(f null)

8Standard practice here stands on firm ground; Molinaro, Simon and Pfeiffer (2005) find
that 10-fold cross-validation performs quite similarly to leave-one-out cross validation without
having to take on massive computational costs. 10-fold cross-validation also performs better
than other techniques, particularly in smaller samples like ours.

“When dealing with models with tuning parameters that are themselves selected by cross-
validation, we choose tuning parameters separately within each of the K iterations via another
cross-validation loop. This nested cross-validation is necessary to keep our estimates of gen-
eralization error from being too optimistic (Varma and Simon 2006).

PRL(f) = (3)




Estimate SE Z p

Capability Ratio (logged) 0.26 0.06 4.16 <0.01
Cutpoint: B Wins to Stalemate —-3.31 0.14
Cutpoint: Stalemate to A Wins 1.84 0.09

Table 2. Results of an ordered logistic regression of dispute outcomes on the capability
ratio using the training data. Because there are no missing values in the CINC scores,
these estimates are identical across imputed datasets.

The theoretical maximum, for a model that predicts perfectly, is 1. If a model
predicts even worse than the null model-—meaning it is worse than random
guessing—its proportional reduction in loss is negative.

2.3 Modeling Dispute Outcomes

Our task now is twofold: to assess the predictive power of the capability ratio
and, should we find it lacking (as we do), to build a better alternative.

We model dispute outcomes as a function of the capability ratio via ordered
logistic regression (McKelvey and Zavoina 1975). To reduce skewness, we take
the natural logarithm of the capability ratio. The parameter estimates from the
capability ratio model on the full sample appear in Table 2. Although these re-
sults do not speak directly to the capability ratio’s out-of-sample performance,
they foreshadow why its predictive power is so limited. The coefficient on the
capability ratio is statistically significant but small relative to the cutpoints,
indicating a substantively weak relationship. Dividing the cutpoints by the co-
efficient, we see that we would need a logged capability ratio below —13 or
above +7 to predict any outcome other than a stalemate. These bounds lie
well outside the observed range of capability ratios in the dispute data, which
are bounded below by —9.1 (Palau-Philippines 2000) and above by —0.0004
(Germany—Panama 1940). In other words, the capability ratio always predicts
a stalemate within the sample. This does not bode well for its out-of-sample
performance.

We want a better model than what the capability ratio gives us, but we do
not have a strong a priori sense of what the true relationship between material
capabilities and dispute outcomes looks like. So, we use tools from machine
learning that are designed to predict well without imposing much structure
on the data. Ideally, we would select the predictive model that is best for our
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data, but there are too many algorithms to try them all. To narrow it down,
we defer to the machine learning experts on which algorithms are best. We
draw our set of candidate models from the top-ten list by Wu et al. (2007)
and from the best performers in the tests by Ferndndez-Delgado et al. (2014).
After excluding those unsuited to our data,'® we end up with six predictive
algorithms: C5.0, support vector machines, k-nearest neighbors, classification
and regression trees, random forests, and ensembles of neural nets.!' Each
algorithm is widely used for prediction and can predict dispute outcome prob-
abilities as a complex, potentially nonlinear function of the material capability
components. As a compromise between these flexible “black box” models and
the rigid capability ratio model, we also test ordered logistic regression models
on the capability components.

In the spirit of flexibility, we try each model with different sets of predictors
from the capability data. We examine four sets of variables: the raw capability
components and the annual component shares, each with and without the year
the dispute began. All of our models allow for interactive relationships, so
including the year of the dispute lets the effect of each capability component
vary over time. With two sides per dispute and six capability variables per side,
each model has 12 or 13 variables, depending on whether the year is included.
All told, we have 30 candidate models: four sets of variables for each of our
seven algorithms, plus the capability ratio model and a null model used as a
baseline.

We use cross-validation to estimate how well each of our candidate models
predicts out of sample. The final problem, given those estimates, is to choose
a model to construct an alternative to the capability ratio as a measure of ex-
pected dispute outcomes. It is tempting to simply pick the model with the
lowest cross-validation loss. We can do even better at prediction, however, by
taking a weighted average of all the models. We use the super learner algo-
rithm (van der Laan, Polley and Hubbard 2007) to select the optimal model
weights via cross-validation. Given a set of M candidate models fAl, cees fM, we

OFour of the algorithms named in Wu et al. (2007)—k-means, Apriori, expectation max-
imization, and PageRank—are not suited for the prediction task at hand. We also excluded
AdaBoost due to long computation time and naive Bayes due to poor performance in initial
tests.

11See the Appendix for full details of each method.
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select weights w1, ..., W), to solve the constrained optimization problem

,,,,,

€))

Our final model is the super learner, f = Wn fm. Each individual model
is a special case of the super learner, with full weight w,, = 1 placed on a
single fm. Hence, by the cross-validation criterion, we should prefer the super
learner over any individual model.'? That said, the super learner does provide
the capability ratio with an opportunity to defend itself; should it earn a high
weight, then our costly enterprise may not be worth the effort.

To summarize, we fit and cross-validate M = 30 candidate models, then
combine them into a super learner that we will use to construct a better proxy
for expected dispute outcomes. The biggest downside of our approach is that
the results are not easily interpretable. Because the super learner entails av-
eraging a large set of models—some of which, like random forests, are them-
selves difficult to interpret—it gives us no simple summary of how each predic-
tor affects dispute outcomes. This is not a problem, given our aims. Certainly,
we would not recommend the super learner as a means of testing hypothe-
ses about the determinants of dispute outcomes. However, our goal is not to
test a hypothesis—it is to construct the best proxy possible for how a dispute
between two countries is likely to end. In this context, it is worth sacrificing
interpretability for the sake of predictive power.

2.4 Cross-Validation Results

We now turn to the cross-validation results, which are summarized along with
the super learner weights in Table 3. As the in-sample analysis hinted, the
capability ratio is indeed a poor predictor of dispute outcomes. Its propor-
tional reduction in loss is 0.01, which means its predicted probabilities are just
1 percent more accurate than the null model. This number is not encouraging,

12 As usual when selecting tuning parameters via cross-validation, the value of equation (4)
is not an unbiased estimate of the generalization error of the super learner. Nested cross-
validation is computationally infeasible for the super learner, so we calculate the bias correction
recommended by Tibshirani and Tibshirani (2009) to estimate its generalization error.
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but what matters even more is whether we can do better. A glance at Table 3
confirms that we can: all but one of our 28 alternative models have greater
predictive power than the capability ratio, many of them considerably better.
With these results in hand, we feel comfortable dismissing the capability ratio
as a suboptimal proxy for expected dispute outcomes.

As we expected, the super learner ensemble performs better than any of the
candidate models from which it is constructed. The ensemble’s proportional
reduction in loss is about 23 percent, or four percentage points better than the
best candidate model. Even after we apply a bias correction (see footnotes 9
and 12), the super learner’s predictive power is still the best among our models.
Looking at the weights, what stands out is how few models are substantial
components of the super learner: just five models have a weight of at least
5 percent. More generally, while models with lower generalization error tend
to receive more weight, the relationship is by no means one-to-one. We see
this because the ensemble prefers not only predictive power, but also diversity.
Different classes of models have different blind spots; the more diverse the
ensemble is, the more these blind spots are minimized. A model that looks
bad on its own might still merit non-negligible weight in the optimal ensemble
if it captures a slice of the data missed by the models that are best on their
own.

The super learner predicts dispute outcomes much better than the capa-
bility ratio does. As we have just shown, the capability ratio only improves
by 1 percent on a null model, whereas the super learner gives a 20 percent
improvement. For another illustration of the difference in predictive power,
see the plots of out-of-fold predicted probabilities—the ones we use in cross-
validation—in Figure 1. Under the capability ratio model, all but a handful of
disputes are predicted to have an 80-90 percent chance of ending in stalemate.
Seeing how narrow the capability ratio’s predictive range is, it is little surprise
that it barely does better than a null model at prediction. Conversely, the super
learner makes much better use of the material capability data. Its predictive
range is greater, which in turn allows it to achieve a stronger, though hardly
perfect, relationship between predicted and observed outcomes.

2.5 Implications for International Relations

Our main focus is on developing a proxy for relative power that predicts the
outcomes of militarized disputes, and predictive approaches like ours are not
optimal for testing specific hypotheses (Shmueli 2010). Nonetheless, we can
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Method Data Year CV Loss PR.L. Weight
Null Model Intercept Only 0.54 <0.01
Ordered Logit Capability Ratio 0.53 0.01 <0.01
Ordered Logit Components 0.49 0.09 <0.01
Ordered Logit Components v 048 0.10 <0.01
Ordered Logit Proportions 0.51 0.04 <0.01
Ordered Logit Proportions v 0.49 0.08 <0.01
C5.0 Components 0.53 0.02 0.01
C5.0 Components v 0.51 0.04 0.04
C5.0 Proportions 0.52 0.03 0.02
C5.0 Proportions v 0.51  0.05 0.01
Support Vector Machine Components 046 0.14 <0.01
Support Vector Machine Components v 0.46 0.14 <0.01
Support Vector Machine Proportions 0.49 0.09 <0.01
Support Vector Machine Proportions v 0.48 0.10 <0.01
k-Nearest Neighbors Components 0.47 0.12 <0.01
k-Nearest Neighbors Components v 0.45 0.16 0.02
k-Nearest Neighbors Proportions 0.51 0.05 <0.01
k-Nearest Neighbors Proportions Ve 048 0.11 <0.01
CART Components 0.52 0.02 <0.01
CART Components v 0.44 0.19 0.28
CART Proportions 0.55 —0.03 <0.01
CART Proportions v 0.50 0.06 <0.01
Random Forests Components 0.49 0.08 0.04
Random Forests Components v 0.48 0.11 0.19
Random Forests Proportions 0.47 0.12 <0.01
Random Forests Proportions v 0.48 0.11 0.01
Averaged Neural Nets Components 0.44 0.19 0.08
Averaged Neural Nets Components v 0.43 0.19 0.13
Averaged Neural Nets Proportions 0.48 0.11 <0.01
Averaged Neural Nets Proportions v 044  0.19 0.16
Super Learner 0.41 0.23

(bias-corrected) 0.43 0.20

Table 3. Summary of cross-validation results and super learner weights. All quantities

represent the average across imputed datasets.
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glean from our results a few important insights about the nature of the relation-
ship between capabilities and power. The first is that there is a relationship—
that variation in dispute outcomes is associated with variation in the disputants’
raw capabilities. This finding contrasts with previous studies concluding that
military capabilities do not affect dispute outcomes (Maoz 1983). The prob-
lem is the use of the capability ratio to measure material power, which is only
weakly related to dispute outcomes. Consequently, studies that rely on it will
conclude that material power is unimportant. We find, however, that mate-
rial power is related to dispute outcomes, albeit in ways that transcend the
capability ratio’s usefulness.

But material power is not all that matters. Even after an intense, diverse
predictive effort, we explain only 20 percent of the variation in dispute out-
comes with material capability variables. To some extent this reflects the in-
herent unpredictability of military affairs; we would never expect to predict
outcomes perfectly. We suspect, however, that we could better predict dis-
pute outcomes even better by conditioning on even more observable indica-
tors. That is a task for future work, as the purpose of this paper is only to
develop a proxy for the material components of relative power.

A second important finding is that the determinants of material power
change over time. This conclusion may sound obvious, but it raises the ques-
tion of why international relations scholars continue to use a proxy for power
that assumes the relationship is unchanging. The simplest way to observe that
time matters is to compare the predictive power of the models with and with-
out the year variable: in 13 out of 14 cases, the model that includes time
predicts better than its closest time-less counterpart.'’®> The improvement in
performance does not just reflect the fact that the distribution of dispute out-
comes has changed over time (though, to be clear, it has). All of our models
that include the year of dispute allow for the effects of each individual capa-
bility component to vary with time. For example, in our random forests on the
components and year, every single tree contains at least one node that splits
on a capability component whose parent node splits on the year of dispute, in-
dicating a capability effect that is time-dependent. In fact, in about 27 percent
of trees, the initial split is on the year of dispute.

Finally, our results show that a country’s material power cannot be summa-
rized in a single index. Our ordered logit models construct a flexible index that
allows for different weights on the components, variation over time in those

13The difference in log loss is statistically significant (paired t = —3.25, p = 0.006).
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weights (in the model with year included), and different weights for initiators
and targets. Nonetheless, even the best ordered logit model has less than half
the predictive power of our flexible ensemble. What this means is that the
relationship between each capability component and overall material power
is conditional, not absolute. The usefulness of a particular component may
depend in part on the composition of the opponent’s capability holdings. The
super learner results are too complex to allow us to dig into the specifics of
these interactions, but they alert us to their existence—and to the limitations
of monadic indices as a measure of power. This ties well to broader theoretical
conceptions of power; Dowding (1991, 48) observes that power necessarily
involves a social relation among multiple actors.

3 The New Measure: Dispute Outcome Expectations

We use the super learner results to construct a new proxy for expected dispute
outcomes—one that predicts actual dispute outcomes much more accurately
than the capability ratio does. For any pair of countries at a particular point
in time, whether or not they actually had a dispute with each other, we can
use the super learner to ask, “Based on what we know about their material
capabilities, how would a dispute between these countries be likely to end?”
To construct the new proxy, we use the super learner to make predictions for
every directed dyad—year in the international system between 1816 and 2007,
the range of years covered by the National Material Capabilities data. We call
the resulting dataset the Dispute Outcome Expectations data, or DOE. The DOE
data contains predictions for more than 1.5 million directed dyad—years.'*
The DOE scores are naturally directed, since each dispute in our training
data contains an initiating side and a target side. However, many analyses
in the international conflict literature (e.g., of dispute occurrence) use undi-
rected data. We calculate undirected DOE scores through a simple average of
the directed values. For example, to calculate the probability that the United
States would win a dispute against the United Kingdom in 1816, we average
its estimated chances of victory as an initiator (36 percent) and as a target
(11 percent) to yield 23.5 percent. If an analyst using the DOE data believed
that the likely identity of an initiator in a hypothetical dispute were not a coin

4About 19 percent of directed dyad—years contain missing values of the capability com-
ponents for at least one country. We average across imputations of the capabilities data to
calculate the DOE scores for these cases. See the Appendix for details.
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flip, she could take a different average of the directed scores to produce a more
representative undirected score.

The DOE measures have two advantages over the capability ratio as a proxy
for expected dispute outcomes. First, they are direct measures of the quantity
of primary interest to scholars of conflict: the probability that each state would
win in a hypothetical dispute. Although the capability ratio is a proportion, it
cannot be interpreted as the probability of victory. The ease of interpretation
is particularly important for scholars who wish to control for expected dispute
outcomes in a regression model. The coefficient on a DOE score can be inter-
preted directly as the marginal effect of a state’s chance of victory; the coeffi-
cient on the capability ratio cannot. Second, as we have already seen, within
the set of state pairs where disputes occur, the DOE measures are much better
predictors of the outcome than the capability ratio is. In short, they are supe-
rior proxies, and therefore are the appropriate choice for scholars who need
an accurate measure of expected dispute outcomes. The canonical correlation
between the DOE scores and the capability ratio is 0.44 (for both the directed
and undirected DOE scores), so the measures are related but distinct.

The DOE scores have one drawback worth mentioning: they should not be
included as controls in regressions whose dependent variable is the outcome of
a dispute or war. This may seem contradictory, given how much effort we have
just spent showing that DOE scores are superior predictors of dispute outcomes.
The reason they are superior is that, unlike the capability ratio, they are cali-
brated using real dispute data. But this in turn means that DOE scores would be
endogenous in a regression whose dependent variable is dispute outcomes—
i.e., the same data we used to construct the DOE scores. Another way to think
about it is that the DOE score measures expectations of dispute outcomes, and
there is no reason to think these expectations themselves have an indepen-
dent effect on the outcomes. So when we test causal hypotheses about dispute
outcomes, we should control for raw capabilities, not expectations. But when
we are modeling dependent variables that might be affected by expectations,
such as the onset of a crisis or a state’s decision to join an ongoing conflict, we
should use the best available proxy for those expectations—namely, the DOE
scores.

Another potential concern about the DOE scores is selection bias. We calcu-
late the DOE scores by learning from actual dispute outcomes, but there may
be systematic differences between dyad-years with disputes and those with-
out. We do not think this concern should discourage conflict scholars from
including DOE scores in their empirical analyses. The relevant consideration
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Figure 2. Comparison of predicted outcome probabilities over time from the capability
ratio and the super learner (DOE scores) for the United States versus Russia. These
plots use the undirected scores.

is not whether DOE scores are perfect—obviously, they are not—but rather
whether they are better than the existing alternatives. We cannot evaluate the
performance of any proxy at predicting the outcomes of disputes that did not
happen in the first place. Seeing as the capability ratio barely predicts out-
comes of actual disputes, we see no reason to assume it does well predicting
counterfactual outcomes. Scholars who want the best available proxy for rel-
ative material power should rely on DOE scores, while keeping in mind its
limitations.

To illustrate the contrast between the capability ratio and DOE scores for
forecasting hypothetical dispute outcomes, Figure 2 plots the two models’ pre-
dictions over time for the United States versus Russia. According to the ca-
pability ratio model, there was essentially no change between 1816 and 2007
in the likelihood of either side winning a dispute. We need not dwell on the
implausibility of this prediction. Conversely, the DOE scores stack up with our
intuitions relatively well: the predicted chance of a stalemate balloons during
the Cold War, but the chance of victory by the United States picks up afterward.

In light of the DOE scores’ superior predictive performance in the Milita-
rized Interstate Disputes data, we are inclined to believe they dominate the
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capability ratio as a proxy for expected dispute outcomes. Next, we test this
conjecture by seeing if replacing the capability ratio with DOE scores in em-
pirical models of international conflict improves their in-sample fit and out-of-
sample predictive power.

4 Using the New Measure

We have shown that our measure, the DOE score, predicts international dispute
outcomes better than the capability ratio. But most recent studies of conflict
do not aim to predict how disputes will end. They focus on other dependent
variables, and they usually only treat the capability ratio (or other functions of
raw capabilities) as a control. In this section, we investigate how well the DOE
score performs as a replacement for the capability ratio in this more typical
setting. First, we replicate 18 recent empirical models of various international
phenomena, finding that these models usually fit and predict better when we
replace CINC-based measures with DOE scores. After that, we provide some
advice to practitioners on how to decide which measure—or measures—to in-
clude.

4.1 Replication Analysis

International relations scholars often control for the capability ratio as a proxy
for expected outcomes when modeling dependent variables besides who wins,
such as the onset or escalation of a dispute. We have shown that the DOE score
is a better proxy than the capability ratio, but it does not follow immediately
that it is a better control variable in studies of conflict more generally. Can we
improve on these analyses—i.e., do our regressions fit the data better—if we
replace the capability ratio with our new measure? To address this question,
we replicate 18 recent analyses of conflict using DOE scores in place of the
capability ratio or other functions of CINC scores. On the whole, we see that the
models with DOE scores tend to have better in- and out-of-sample fit, though
not always.

We constructed the set of replications by looking for empirical analyses of
dyad-years (directed or undirected) that included the capability ratio or an-
other function of CINC scores as a covariate. Each study was published re-

20



Ic

AIC PR.L.
Replication N CINC DOE Vuong CINC DOE
Bennett (2006) 1,065,755 29712 30969 —13.89 0.245 0.213
Weeks (2012) 766,272" 15816 15568 4.70 0.310 0.321
Jung (2014) 742,414 10659 10588 2.44 0.350 0.354
Park and Colaresi (2014) 379,821 10632 10587 2.68 0.315 0.318
Sobek, Abouharb and Ingram (2006) 183,451" 5344 5199 433 0.326 0.344
Gartzke (2007) 171,509" 4284 4167 4.04 0.442 0.457
Salehyan (2008b) 86,497 8864 8821 0.58 0.279 0.282
Fuhrmann and Sechser (2014) 85,306 2614 2580 1.36 0.203 0.208
Arena and Palmer (2009) 54,4037 1152 1061 2.77 0.071 0.137
Owsiak (2012) 15,806 5805 5750 2.36 0.117 0.125
Zawahri and Mitchell (2011) 12,186 814 809 0.66 0.062 0.066
Salehyan (2008a) 10,197 3003 2981 1.43 0.101 0.107
Fordham (2008) 7,788 537 604 —2.27 0.275 0.188
Dreyer (2010) 5,316 3676 3635 2.48 0.239 0.248
Huth, Croco and Appel (2012) 3,826 5938 5935 —0.64 0.053 0.052
Uzonyi, Souva and Golder (2012) 1,667 2008 1986 1.54 0.128 0.137
Weeks (2008) 1,276 1574 1568 0.03 0.101 0.105
Morrow (2007) 864 1488 1504 —2.81 0.260 0.251

Table 4. Summary of results from the replication analysis. In-sample goodness of fit is measured by the AIC and the
Vuong (1989) test. Positive values of the Vuong test statistic indicate that the model with DOE terms fits better than the
model with CINC terms, and vice versa for negative values. The Vuong test statistic has a standard normal distribution
under the null hypothesis of no difference between the models, so values with a magnitude of 1.96 or greater would lead
us to reject the null hypothesis at the 0.05 significance level. Out-of-sample fit is measured by proportional reduction
in log loss relative to the null model, as reported in the last two columns. We use repeated 10-fold cross-validation to
estimate each model’s out-of-sample log loss, with 10 repetitions for models indicated by a dagger (i) and 100 repetitions
for all others. The null model’s log loss is estimated via leave-one-out cross-validation.



cently in a prominent political science or international relations journal.!®> We
examined only studies with publicly available replication data. If we could
not reproduce a study’s main result or were unable to merge the DOE scores
into the replication data (e.g., because of missing dyad-year identifiers), we
excluded it from the analysis. We also excluded studies that employed du-
ration models or selection models, due to conceptual and technical problems
with assessing their out-of-sample performance. Lastly, we excluded studies
in which our measure of expected dispute outcomes would be endogenous,
namely those whose dependent variable was MID outcomes—the same data
we used to construct the DOE scores—or a closely related quantity. In the end,
we were left with the 18 studies listed in Table 4.

For each analysis in our sample, we begin by identifying the main statistical
model reported in the paper, or at least a representative one.!® We then esti-
mate two models: the original model, and a replicated model where we replace
any functions of CINC scores with their natural equivalents in DOE scores. For
example, if the capability ratio is logged in the original model, we log the DOE
scores in the replicated model. As a basic measure of each model’s in-sample
goodness of fit, we compute the Akaike (1974) Information Criterion,”

AIC = 2(number of coefficients) — 2(log-likelihood).

The AIC is commonly used in model selection, with lower values representing
better fit. In addition, we compute the Vuong (1989) test of the null hypothe-
sis that the original and replicated models fit equally well.!® To estimate each
model’s out-of-sample fit, we perform repeated 10-fold cross-validation. Be-
cause each study has a discrete dependent variable, we again employ the log
loss (equation (1)) to measure out-of-sample fit.

Table 4 summarizes the results of the replication analysis. In general, the
models that include DOE scores do better than those with CINC scores by both
in- and out-of-sample criteria. Starting with in-sample fit, we see that the DOE

5For details, see footnote 3.

1When no main model is apparent, our heuristic is to pick one on the log-likelihood—-sample
size frontier. Details of the model chosen from each paper and the functions of CINC and DOE
scores used are in the Appendix.

7Because DOE scores are ternary, the replicated models typically have more parameters
than their original counterparts. Hence we measure in-sample fit with the AIC, which penalizes
over-parameterization, rather than the log-likelihood.

18We employ the standard Bayesian Information Criterion (Schwarz 1978) correction to the
Vuong test statistic.
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model has a lower AIC than the CINC model in 15 of 18 cases. Moreover,
in more than half of those cases (8), under the Vuong test we would reject
at the 0.05 significance level the null hypothesis that the models fit equally
well. The difference in fit is also statistically significant in all three cases where
the CINC model has a lower AIC. The results are similar for out-of-sample fit,
with the DOE model having a greater proportional reduction in log loss in 14
cases. The improvement due to using DOE scores is typically modest—about a
single percentage point increase in the proportional reduction in log loss. For
context, keep in mind that these studies do not take capability measures as a
key theoretical variable of interest. In each regression, the capability measure
is just one of a battery of control variables. With so much else going on in
these models, even a substantial improvement in the quality of the capability
measure may lead to just a small increase in overall model fit or predictive
power.

With such a small sample of replicated studies, we can only conjecture
about why DOE performs better in some cases and worse in others. We see that
the cases where DOE is significantly better according to the Vuong test tend to
have large sample sizes—but, then again, the study where it does worst has the
largest N in our sample. In two of the replications where DOE performs worst,
namely Bennett (2006) and Fordham (2008), we see that both specifications
include the raw CINC scores alongside or in lieu of the capability ratio. These
terms may be capturing monadic effects that the purely dyadic DOE scores
miss. On the other hand, in the other three analyses that include raw CINC
scores (Arena and Palmer 2009; Zawahri and Mitchell 2011; Weeks 2012), the
replication with DOE scores performs better by both AIC and cross-validation
loss.

4.2 Advice to Practitioners

Seeing as neither the capability ratio nor DOE scores are uniformly better in
typical applications, how should empirical scholars choose which one to in-
clude in their analysis? Our main recommendation is a theory-driven ap-
proach. When theory provides no guidance, we recommend either a data-
driven approach or dropping capability measures altogether.

If theory suggests that material capabilities only affect the outcome of in-
terest insofar as they shape expectations about how a dispute would end, then
DOE scores are the best measure to control for. Figure 3 contains a causal
graph of this situation. The clearest examples of theories where only expecta-
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Expected
Outcomes
Raw Dependent
Capabilities Variable

Figure 3. Raw capabilities only affect the outcome of interest through expectations.

tions matter come from the formal literature on crisis bargaining. Take Pow-
ell’s (1999) theory of bargaining in the shadow of power. War is possible only if
the status quo distribution of benefits is far enough from the expected outcome
of conflict that at least one state is dissatisfied. An empirical model derived
from this theory should control for DOE scores rather than the capability ratio
or other poor proxies for expectations.

Expected
Outcomes
Raw Dependent
Capabilities Variable

Figure 4. Raw capabilities affect the outcome of interest both directly and through
expectations.

If material capabilities affect the outcome both directly and indirectly via
expectations, then it would be appropriate to control for both raw capabilities
and expected dispute outcomes. Figure 4 illustrates this scenario. For exam-
ple, imagine an empirical study of “sinking costs” via military mobilization in
international crises (Fearon 1997). The initial movement of peaceful relations
into a crisis, as well as early behavior at the bargaining table, might be shaped
solely by states’ expectations about dispute outcomes. But if states build up
their military as a way to signal resolve, independently of the effect on likely
outcomes, then raw capabilities matter too. When empirically modeling a the-
ory like this, scholars should include both DOE scores and raw capability mea-
sures. The ratio of CINC scores may or may not be the most appropriate way
to capture raw capabilities—that, too, depends on the specifics of the theory.

The last possibility to consider is that expectations do not affect the out-
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Figure 5. Raw capabilities directly affect the outcome of interest, but expectations do
not.

come of interest. In this case, empirical models should only include raw capa-
bility measures, not DOE scores. The clearest example is when the dispute out-
come itself is the dependent variable. First, absent some kind of self-fulfilling
prophecy effect, we would expect actual capability holdings to drive outcomes
more so than expectations. Second, because DOE scores are calculated using
the dispute outcome data, the DOE scores themselves are endogenous to ob-
served outcomes, and thus should not be included as an independent variable
when outcome is the dependent variable.!?

When there is no theory or the theory does not specify how material capa-
bilities affect the outcome of interest, we recommend a data-driven approach.
The steps are the same ones we took in the replication analysis: determine a
metric for model fit (whether in- or out-of-sample), run the model separately
for each potential measure, and choose the best-fitting model. Alternatively, if
your theory says nothing about the relationship between capabilities and the
outcome of interest, it may be best not to include capability measures at all. A
confounding variable, by definition, must be related to both the treatment and
outcome of interest. If raw capabilities are not supposed to affect the outcome
either directly or through expectations, then they are not a confounder and
there is no need to control for them.

5 Conclusion

In this paper, we have argued that proxies should be constructed using pre-
dictive power as the criterion of interest, provided a method for doing so, and
demonstrated the usefulness of the method in an application to measuring rel-

9In principle, this latter problem could be solved, albeit at great computational expense, by
only using data for years up to t — 1 to calculate the DOE score for year t.
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ative military power. We hope that our efforts will be of use both for the DOE
scores we provide and for the theoretical merits of our general argument.

In our application, the DOE scores outperform the extant proxy—the CINC-
based capability ratio—in a number of important ways. In pure terms, the DOE
score more closely relates to what international relations scholars care about:
the expected outcome of a dispute between two nations. It therefore has a
more natural interpretation than the capability ratio. It also lacks the ad hoc
assumptions imposed by both the CINC score and the ratio-based transforma-
tion used in most studies. On the practical side, our replications suggest that
the DOE score is a better contributor to the usual battery of variables included
in the ever-expanding universe of international relations regressions. We hope,
then, that it will find use as scholars advance and test new claims.

Though it represents a massive improvement over the status quo, the DOE
score could still be improved. We have only included those variables that could
be extracted from the data used to construct the capability ratio—namely, the
six Correlates of War National Material Capabilities variables. We did so con-
sciously, as we wanted to demonstrate that our method could improve mea-
sures holding the covariates fixed. Having made our point, we look forward
to seeing what the future holds for coming versions of DOE when new data is
brought to bear on the problem. At the risk of belaboring: we created DOE
using open-source software and have made our replication code available, and
so anybody with a computer—and some patience!—could create a new version
with new covariates.

These improvements and opportunities for further refinement are espe-
cially exciting given the broad substantive points that we have managed to
glean from our rather general analysis. Most obviously, our results demon-
strate an important effect of material holdings on dispute outcomes; this is
especially interesting since we use all militarized disputes, and not only full-
fledged wars, as our training class. This result alone makes the flexible mea-
surement of powers a fruitful avenue for further substantive research, and one
would not have arrived at the same conclusion armed only with the capabil-
ity ratio. Those interested in taking on the challenge may proceed our two
more nuanced substantive findings. First, power (and its relationship with
capability) should be thought of as dynamic, not static. That which makes
a state strong today might be worthless tomorrow, while unforseen advances
may render previously unappreciated resources vital. Second, power is inher-
ently relational. Paraphrasing Dowding (1996, 4), it makes little sense to say
“State A has power;” instead, we should focus on what State A has the power
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to do, which necessarily involves her social power over some State B. Our re-
sults suggest that such thinking is far more relevant than a strictly monadic
approach.

On the methodological side, we believe that our data-driven approach to
measurement will prove useful for those wishing to proxy for other quantities.
All one needs is a set of predictor variables X and some outcome of interest Y —
the procedure we provide to produce a mapping f from X to Y will work. Just
as with introducing new covariates in any given application, future scholars
can improve their proxies by including new models for evaluation in the super
learner—the general approach remains unchanged. Our application tasked us
to create a proxy of a probabilistic expectation like those seen in formal models
of choice under uncertainty, and similar applications provide a natural starting
point for our method. Doing so, however, requires good theory for just what it
is that we hope to predict with our abstractions. As such theories continue to
develop, we hope political scientists across subfields will turn their attention
to examples like these as they construct new measures and improve existing
ones.

We would like to conclude with a still broader point. Breiman (2001) ar-
gues that statistical modelers fall into one of two cultures: data modelers,
who interpret models’ estimates after assessing overall quality via in-sample
goodness of fit; and algorithmic modelers, who seek algorithms that predict
responses as well as possible given some set of covariates.? The method we
advance is certainly algorithmic. Our decision to adopt algorithmic modeling
based on prediction, however, was not culture-driven—it was purpose-driven
(Clarke and Primo 2012). Most simply, prediction matters for measurement,
so algorithmic tools should play a larger role. But as we show in the replica-
tion analysis, an algorithmically constructed proxy can be useful to include in
traditional models. As new problems emerge and new solutions arise to solve
them, we believe methodological pragmatism will be an important virtue. We
neither expect nor encourage empirical political science to turn its focus from
causal hypothesis testing to prediction. But good hypothesis testing depends
on good measures, and sometimes the best way to build a measure is to assume
the persona of the algorithmic modeler. By doing just that, this paper has de-
veloped one measure that improves on the previous state of the art along a

2011 case it is not obvious from our previous citations, Breiman self-identifies as an algorith-
mic modeler. He claims that 98% of statisticians fall into the data modeling camp, or at least
did as of 2001. We are comfortable positing that the percentage is similar, if not greater, for
empirical political scientists in 2015.
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number of dimensions.
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A Appendix

A.1 National Material Capabilities Data

Our predictors are taken from the National Material Capabilities (v4.0) dataset
from the Correlates of War project (Singer, Bremer and Stuckey 1972).%! The
dataset contains observations on six variables for 14,199 country-years from
1816 to 2007. For details on the variables and their measurement, see the
NMC Codebook.?? Table 5 lists the proportions of zeroes and missing values
among each variable.

Component Pr(Zero) Pr(Missing) 0
Iron and Steel Production 0.558 0.006 27
Military Expenditures 0.034 0.139 277
Military Personnel 0.066 0.027 27!
Primary Energy Consumption 0.097 0.030 273
Total Population 0.000 0.002 277
Urban Population 0.210 0.007 278

Table 5. Proportions of zeroes and missing values in each National Military Capability
component variable.

All six variables are strongly right-skewed. Since five of the six variables
are sometimes zero-valued (though all are non-negative), a logarithmic trans-
formation is not appropriate. Instead, to correct for skewness, we apply an
inverse hyperbolic sine transformation (Burbidge, Magee and Robb 1988) to
each component:

h(x,0) = sinh™(6x) =log (6x + /(6x)> +1). (5)

We set the scale 6 separately for each component variable with the aim of
making the transformed variable approximately normally distributed. For each
variable, we choose the value of 0 € {2¢ (111_10 that minimizes the Kolmogorov-
Smirnov test statistic (Massey Jr 1951) against a normal distribution with the

21 Downloaded from http://correlatesofwar.org/data-sets/national-

material-capabilities/nmc-v4-data/at_download/file.
22 Available at http://correlatesofwar.org/data-sets/national-material-
capabilities/nmc-codebook/at_download/file.
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same mean and variance. Table 5 gives the scale selected for each component.
We use the transformed components in both the multiple imputation (see be-
low) and the super learner training.

A.2 Militarized Interstate Dispute Data

Our sample and outcome variable are taken from the Militarized Interstate Dis-
putes (v4.1) dataset from the Correlates of War project (Palmer et al. 2015).%3
The dataset records the participants and outcomes of interstate disputes from
1816 to 2010. To avoid the problem of aggregating capabilities across multiple
states, we exclude disputes with more than one state on either side. We drop
disputes that end in an outcome other than one side winning, one side yield-
ing, or a stalemate;?>* we then collapse “A Wins” and “B Yields” into a single
coding, and similarly for “B Wins” and “A Yields.” Finally, since the capabilities
data only run through 2007, we exclude disputes that end after 2007. In the
end, we have N = 1,740 cases.

For each dispute in our dataset, we code the participating countries’ capa-
bilities using the values in the year the dispute began. About 17 percent of
disputes have at least one missing capability component for at least one par-
ticipant.

A.3 Multiple Imputation

As noted above, all of the National Material Capabilities variables contain some
missing values. Following standard practice, we multiply impute the missing
observations. We perform the imputations via the Amelia software package
(Honaker, King and Blackwell 2011).

Rather than just impute the missing values in the final dataset of disputes,
we impute the entire National Material Capabilities dataset. This allows us to
fully exploit the dataset’s time-series cross-sectional structure in the imputation
process (Honaker and King 2010). We include in the imputation model a cubic
polynomial for time, interacted with country dummy variables. As this results
in an explosion in the number of parameters in the imputation model, we then
impose a ridge prior equal to 0.1 percent of the observations in the dataset

2 Downloaded from http://correlatesofwar.org/data-sets/MIDs/mid-level/
at_download/file.
24 For details on other kinds of outcomes, see the MID Codebook.
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(see Section 4.7.1 of the Amelia package vignette). We enforce the constraint
that every imputed value be non-negative. Finally, we impose an observation-
level prior with mean zero and variance equal to that of the observed values
of the corresponding component variable for every missing cell that meets the
following criteria:

e There are no non-zero observed values in the time series preceding the
cell

e The first observed value that comes after the cell is zero

So, for example, if a country’s urban population is zero from 1816 to 1840,
missing from 1841 to 1849, and zero in 1850, we would impose this form
of prior on the 1841-1849 values. Diagnostic time series plots of observed
versus imputed values within each data series, generated by the tscsPlot ()
function in Amelia, will be made available in the project’s Dataverse.

The presence of missing data also complicates the calculations of country-
by-country proportions of the total amount of each component by year. One
option is to recompute the annual totals in each imputed dataset, so that the
resulting data will be logically consistent—in particular, all proportions will
sum to one. The drawback of this approach is that virtually every observation
of the proportions will differ across the imputed datasets, even for countries
with no missing data, since the annual totals will differ across imputations. An
alternative approach is to compute the annual totals using only the observed
values. The advantage is that non-missing observations will not vary across
imputed datasets; the downside is that the proportions within each imputation
will generally sum to more than one. For our purposes in this paper, we think
it is preferable to reduce variation across imputations, even at the expense
of some internal consistency in the imputed datasets, so we take the latter
approach: annual totals are the sums of only the observed values.

We impute I = 10 datasets of national capabilities according to the proce-
dure laid out above, and we merge each with the training subset of our dispute
data to yield I training data imputations. We run the super learner separately
on each imputation, and our final model is an (unweighted) average of the I
super learners.

After training is complete, we run into missing data problems once again
when calculating DOE scores. To calculate predicted probabilities for dyads
with missing values, we calculate a new set of I = 10 imputations of the ca-
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pabilities data and take an (unweighted) average of our model’s predictions
across the imputations.

A.4 Super Learner Candidate Models

We use the R statistical environment (R Core Team 2015) for all data analysis.
We fit, cross-validate, and calculate predictions from each candidate model
through the caret package (Kuhn 2008). We then construct the super learner
by solving (4) via base R’s constrOptim() function for optimization with
linear constraints. Further details about each candidate model are summarized
below.

e Ordered Logit (McKelvey and Zavoina 1975)

Package MASS (Venables and Ripley 2002)

Tuning Parameters None

Notes In the “Year” models, the year of the dispute is included directly
and interacted with each capability variable

e C5.0 (Quinlan 2015)

Package C50 (Kuhn et al. 2015)
Tuning Parameters

— Number of boosting iterations (trials): selected via cross-
validation from {1, 10, 20, 30,40, 50}

— Whether to decompose the tree into a rule-based classifier
(model): selected via cross-validation

— Whether to perform feature selection (winnow): selected via
cross-validation

e Support Vector Machine (Cortes and Vapnik 1995)

Package kernlab (Karatzoglou et al. 2004)
Tuning Parameters

- Kernel width (sigma): selected via cross-validation from
{0.2,0.4,0.6,0.8,1}
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— Constraint violation cost (C): selected via cross-validation from
{3,3,1,2,4}
Notes Radial basis kernel
e k-Nearest Neighbors (Cover and Hart 1967)

Package caret (Kuhn 2008)
Tuning Parameters

— Number of nearest neighbors to average (k): selected via cross-
validation from {25, 50, ...,250}

Notes All predictors centered and scaled to have zero mean and unit
variance

e CART (Breiman et al. 1984)

Package rpart (Therneau, Atkinson and Ripley 2015)
Tuning Parameters

- Maximum tree depth (maxdepth): selected via cross-
validation from {2,3,...,9,10} (only up to 9 for models with-
out year included)

e Random Forest (Breiman 2001)

Package randomForest (Liaw and Wiener 2002)
Tuning Parameters

— Number of predictors randomly sampled at each split (mtry):
selected via cross-validation from {2,4,...,12}

Notes 1,000 trees per fit
e Averaged Neural Nets (Ripley 1996)

Package nnet (Venables and Ripley 2002), caret (Kuhn 2008)
Tuning Parameters

— Number of hidden layer units (size): selected via cross-
validation from {1, 3,5, 7,9}
- Weight decay parameter (decay): selected via cross-validation
from {10°,107%,1072,1073,107%}
Notes Creates an ensemble of 10 neural nets, each initialized with dif-
ferent random number seeds
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A.5 Replications

The following list contains basic information about each model in the replica-
tion study. We carry out logistic and probit regressions via glm() in base R
(R Core Team 2015), multinomial logit via multinom() in the nnet package
(Venables and Ripley 2002), ordered probit via polr () in the MASS package
(Venables and Ripley 2002), and heteroskedastic probit via hetglm() in the
glmx package (Zeileis, Koenker and Doebler 2013).

e Arena and Palmer (2009)

Model Replicated Table 3

Unit of Analysis Directed Dyads

Estimator Heteroskedastic Probit

CINC Terms CINC,

DOE Terms p,, pg

Notes CINC and DOE terms are included in both the mean and disper-
sion equations.

e Bennett (2006)

Model Replicated Table 1, Column 1

Unit of Analysis Directed Dyads
Estimator Logistic Regression

CINC Terms CINC,, CINCg, CINC,,;, / CINC
DOE Terms p,, pg, |pa— Psl

max

e Dreyer (2010)

Model Replicated Table 2, Model 2
Unit of Analysis Undirected Dyads
Estimator Logistic Regression
CINC Terms log(CINC,,;, / CINC,,.,.)
DOE Terms 10g p,in> 108 Prax

e Fordham (2008)
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Model Replicated Table 2, third column (alliance onset with full set of
controls)

Unit of Analysis Undirected Dyads
Estimator Probit Regression

CINC Terms log CINC;, log CINGC,
DOE Terms log pys, logp,

e Fuhrmann and Sechser (2014)

Model Replicated Table 2, Model 1
Unit of Analysis Directed Dyads
Estimator Probit Regression

CINC Terms CINC, /(CINC,+ CINGCp)
DOE Terms p,, pg

e Gartzke (2007)

Model Replicated Table 1, Model 4
Unit of Analysis Undirected Dyads
Estimator Logistic Regression
CINC Terms log(CINC,,, / CINC, ;)
DOE Terms logp,.i,, l0g Prax

e Huth, Croco and Appel (2012)

Model Replicated Table 2
Unit of Analysis Directed Dyads
Estimator Multinomial Logistic Regression

CINC Terms Average of A’s respective shares of total dyadic military per-
sonnel, military expenditures, and military expenditures per soldier

DOE Terms p,, pg
e Jung (2014)

Model Replicated Table 1, Model 1
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Unit of Analysis Directed Dyads
Estimator Logistic Regression

CINC Terms CINC, /(CINC, + CINCy)
DOE Terms p,, pg

e Morrow (2007)

Model Replicated Table 1, first column (no weighting for data quality)
Unit of Analysis Directed Dyads

Estimator Ordered Probit Regression

CINC Terms CINC, /(CINC, + CINCy), interaction with joint ratification
DOE Terms p,, pj, interactions of each with joint ratification

Notes Capability ratio is “corrected for distance to the battlefield and
aggregated across actors with a unified command.” We drop the
cases with coalitional actors in both models, hence the difference
in sample size from the original article. No distance correction is
applied to the DOE scores.

e Owsiak (2012)

Model Replicated Table 3, Model 3
Unit of Analysis Undirected Dyads
Estimator Logistic Regression
CINC Terms log(CINC,,;, / CINC
DOE Terms 10g p,in> 108 Prax

min max )

e Park and Colaresi (2014)

Model Replicated Table 1, Model 2
Unit of Analysis Undirected Dyads
Estimator Logistic Regression

CINC Terms CINC,;, /CINC

DOE Terms |p, — p;|, interaction with contiguity

interaction with contiguity

max>

e Salehyan (2008a)
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Model Replicated Table 1, Model 1

Unit of Analysis Undirected Dyads

Estimator Logistic Regression

CINC Terms log(CINC,,,, /(CINC,,., + CINC_;,))
DOE Terms 10g pin» 108 Proax

e Salehyan (2008b)

Model Replicated Table 1, Model 2
Unit of Analysis Directed Dyads
Estimator Probit Regression

CINC Terms CINC, /(CINC,+ CINCy), interaction with refugee stock in
A, interaction with refugee stock from A

DOE Terms p,, pj, interaction of each with refugee stock in A, interac-
tion of each with refugee stock from A

e Sobek, Abouharb and Ingram (2006)

Model Replicated Table 1, first row (political prisoners model)
Unit of Analysis Undirected Dyads

Estimator Logistic Regression

CINC Terms (CINC,, —CINC,,,)/(CINC,,,. +CINC,;,)

DOE Terms pin, Pmax

e Uzonyi, Souva and Golder (2012)

Model Replicated Table 3, Model 3
Unit of Analysis Directed Dyads
Estimator Logistic Regression

CINC Terms CINC, /(CINC,+ CINCp)
DOE Terms p,, pg

o Weeks (2008)

Model Replicated Table 4, Model 3
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Unit of Analysis Directed Dyads
Estimator Logistic Regression

CINC Terms CINC, /(CINC, + CINCy)
DOE Terms p,, pg

Weeks (2012)

Model Replicated Table 1, Model 2

Unit of Analysis Directed Dyads

Estimator Logistic Regression

CINC Terms CINC,, CINCg, CINC, /(CINC, + CINCp)
DOE Terms p,, p;

Zawahri and Mitchell (2011)

Model Replicated Table 2, Model 1
Unit of Analysis Directed Dyads
Estimator Logistic Regression
CINC Terms CINC,, CINCg

DOE Terms p,, pg

Notes Dyads are directed, but A is the upstream state in a river basin
rather than the (prospective) initiator of conflict, so we use the
undirected form of the DOE scores.

Hafner-Burton and Montgomery (2006)

Model Replicated Table 1, Model 2
Unit of Analysis Undirected Dyads
Estimator Logistic Regression
CINC Terms log(CINC,,, / CINC,;,)
DOE Terms 108 p.in, 108 Drnax
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